

Leading-Edge Asset Management

2nd IWA Leading-Edge Conference & Exhibition on Strategic Asset Management

"Average Network Age Index" (NAX)

Explanatory Factor for Mains Failures and Water Losses

R. Neunteufel,

R. Perfler, H. Theuretzbacher-Fritz, J. Kölbl

Content

- The Austrian Benchmarking
- PI-Influencing Factors
- Development of the NAX
- The Reference Age
- Possible Applications of NAX
- NAX in the Austrian Benchmarking
- Conclusion

The Austrian benchmarking

Client: OVGW based on the IWA PIs enhanced and adapted developed by universities voluntary and anonymous cooperation with EffWB

Leading-Edge Asset Management

The Importance of the Assessment of Influencing Factors

Determination of influencing factors is crucial:

- to the goal of high quality benchmarking
- achieve a better estimation whether some PIs of one utility are in a good or in a poor range

Sub-grouping

- see differences between peer groups very clear
- best practices can be determined

Influencing Factors (ii)

The most important influencing factors:

- unchangeable structural parameter: urbanity
- the age of the pipe network
- IWA "Average Mains Age" (# CI53) ask for average age of total network
- problem: different pipe materials have different expected lifetime

Development of Average Network Age Index NAX - Background

...To have a tool for grouping utilities and an additional explanatory factor:

- according to network age
- based on expired service life

... for evaluation of mains failures and water losses

Leading-Edge Asset Management

NAX - taking into account service life

- based on the age of each main and its length (similar to IWA "Average Mains Age")
- reference age incorporates expected service life of each different material groups

reference age based on:

- literature values (Fuchs, 2001; DVGW W 401)
- expert opinions of Austrian project group

NAX - calculation

NAX = $\Sigma Li * Aact, i / Aref, i$ [%] for i = 1 to n

L ...network length-share of material group [%]
Aact ...actual average age of material group [years]
Aref ...reference age of material group [years]
n ...number of material groups

NAX - material groups (12)

- asbestos cement
- reinforced concrete
- glass-fiber reinforced plastic (GRP)
- cast iron (gray iron) (CI)
- ductile graphite iron "old" without protection against corrosion and without cement lining (until mid of the 1970th)
- ductile graphite iron "new" with galvanizing against corrosion and cement lining (starting from mid 1970th)
- polyethylene (PE)
- polyvinyl chloride (PVC)
- steel "old" without lining (until end of the 1970th)
- steel "new" with cement lining and outer PE casing
- renovation (e.g. inlining)
- other pipe materials

Leading-Edge Asset Management

Considerations Concerning the Reference Age

- reference age is rather an empirical value
- reference age is the age when the mains typically start to cause major problems and should be replaced

influenced by many factors:

- national differences (directives and standardisations)
- regional differences (surroundings and soil structure)
- Iocal differences (subsidence and static and dynamic loads)

Considerations Concerning the Composition of the Index Value

- the index should be a far-spread composition of very new parts medium aged parts and old parts of network, (next to being exchanged)...
- Networks with a homogenous relative age may result in a bulk-renewal.
- A cost-trap might be waiting even if the actual age index is low at present.

Possible Applications of NAX

Grouping utilities according to their network age – age + urbanity to define peer groups for failure rates and leakage!

NAX as an explanatory factor – for any PIs dealing with failure rates and losses.

Eliminating the influence of the assets age -

- other influencing factors can be found and quantified
- the possibility of sub-grouping increases the significance of differences between peer groups

Using NAX in the Austrian **Benchmarking - Examples**

...grouping utilities according to the age structure of their assets

- NAX is less than 40 %
- NAX is 40 % to 60 %
- NAX is more than 60 % \rightarrow old network
- \rightarrow young network
- \rightarrow medium network

Leading-Edge **Asset Management**

Water losses per Connection and Day

Water losses - ILI

Leading-Edge Asset Management

Mains failures – sub grouping

Exception: metropolitan utilities have even lower mains failures

However: water losses show a steady increase with urbanity

Assumption: bursts in metropolitan networks not found easily due to background noise

...resulting in **higher leakage** and **lower mains failures** (found and fixed) at the same time

Conclusion

Strongest influencing factor concerning mains failures and water losses:

urbanity and age of the pipe network.

Calculation of the average mains age does not consider different service lives

- The NAX does and
- provides an estimation of how much of the expected service life has elapsed

Conclusion (ii) - NAX can be used ...

- as an explanatory factor for PIs dealing with failure rates and water losses;
- as a parameter to define peer groups
- to estimate the influence of network age on asset related performance indicators
- Iong term trend of NAX indicates rehabilitation level

"Average Network Age Index" (NAX)

Acknowledgements

...to thank all the participants for the interesting collaboration and their contribution...

Thank you for your interest and attention

Leading-Edge Asset Management